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Classifications of geographic growing origin of three fresh fruits combining elemental profiles with
various modeling approaches were determined. Elemental analysis (Ca, Cd, Cr, Cu, Fe, K, Mg, Mn,
Na, Ni, P, V, and Zn) of strawberry, blueberry, and pear samples was performed using inductively
coupled plasma argon atomic emission spectrometer. Bulk stable carbon and nitrogen isotope analyses
in pear were performed using mass spectrometry as an alternative fingerprinting technique. Each
fruit, strawberry (Fragaria × ananassa), blueberry (Vaccinium caesariense/corymbosum), and pear
(Pyrus communis), was analyzed from two growing regions: Oregon vs Mexico, Chile, and Argentina,
respectively. Principal component analysis and canonical discriminant analysis were used for data
visualization. The data were modeled using linear discriminant function, quadratic discriminant function,
neural network, genetic neural network, and hierarchical tree models with successful classification
ranging from 70 to 100% depending on commodity and model. Effects of Oregon subregional and
variety classification were investigated with similar success rates.
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INTRODUCTION

Globalization has shifted the world market for fresh fruit,
making availability year round commonplace. Concerns sur-
rounding disparate agricultural practices, such as a lack of food
safety standards and protection of the market share, have led
commerce officials to prioritize the dissemination of methods
to determine the geographic origin of commodities. For example,
on May 23, 2000, the Food and Drug Administration announced
that a major strawberry production company in Mexico recalled
almost 13000 pounds of fresh strawberries, including the variety
Fresh Delight used in this study, due toSalmonellacontamina-
tion (1). Food traceability studies are important for three primary
reasons: to improve supply management, to facilitate traceability
for food safety and quality, and to differentiate and market foods
with subtle quality attributes (2). Knowledge of geographic
growing region is not only paramount in upholding account-
ability in the food production industries but is also important
to consumers. In February 2001, the Consumer Right-to-Know
Act (S. 280) was passed, requiring country of origin labels on
perishable agricultural commodities. This act came about largely

from public concern about potentially harmful substances in
consumables (3), and polls show that a majority of consumers
prefer country of origin labels (3, 4). On January 27, 2004,
President Bush signed Public Law 108-199, which delays until
September 30, 2006, the implementation of mandatory country
of origin labeling for all covered commodities except wild and
farm-raised fish and shellfish (5).

Previous attempts have been made to elucidate the country
of origin of edible commodities but, until recently, have been
limited to processed foods. The geolocation of juices (6), drugs
of abuse (7,8), cocoa (8, 9), olive oil (10), nuts and coffee (11,
12), and wine (13, 14) has had moderate success. These
techniques often require the use of multiple instruments, which
can become laborious and increase costs. Vitamin or amino acid
assays have proven successful in geolocating some commodities
but are expensive due to sensitivity to degradation and, therefore,
are not always conducive to broad implementation. Alterna-
tively, we employ a chemical profiling method that is efficient,
nonreagent intensive, and has reliable accuracy to differentiate
the country of origin and geographic growing regions of several
commodities. Although geographic origin analysis of potatoes,
coffee, and pistachios has been performed successfully (15-
17), geographical analysis of fresh strawberry, blueberry, and
pear has not been previously investigated using this method.
Finally, geographic subregional and varietal effects on geo-
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graphic classification prediction of strawberry and blueberry
have not been previously published.

Multielement profiling is based on several environmental and
geologic factors such as soil type, rainfall, and temperature of
a growing region and provides a scientific underpinning to
determine the geographic origin of a commodity. Soils contain
variable concentrations of major, minor, and trace elements. The
availability of these for plant uptake is dependent on the soil
system. Plant elements become available for uptake in soil
solution by several processes, including soil mineral weathering,
decomposition of organic matter, ion exchange processes,
application of soil amendments, and deposition (18). Plant
element sequestration depends on the chemical form in soil
solution. However, plants have evolved several mechanisms for
adequate uptake, including soil acidification by release of
hydrogen ion at the rhizosphere, anion uptake, modification of
soil moisture content, organic compound exudation from roots,
and root respiration (18).

Isotope ratios have been used as another chemical profiling
method to determine geographic origin of biota (19) or biota-
derived products (e.g., crude oil) (20). Recently, Kelly et al.
published a review of the application of multielement and
multiisotope analysis for tracing the geographical origin of food
(21). Chemical, physical, and biological processes, such as
photosynthetic fixation, can result in significant fractionation
of heavy to light stable isotopes in biological matter. Plants have
enzyme(s) that select against the less abundant and heavier13C
isotopes relative to the12C isotopes. Other factors involved in
stable carbon isotope fractionation are temperature, plant type
(e.g., C3 v C4 plants) (22), and the environment (23). For
example, the13C/12C ratios in plants may differ depending on
geography, latitude, location, and climate. Plants in humid
environments take in more CO2 and develop a lower ratio of
13C to 12C than plants in arid environments. Processes affecting
nitrogen isotopic composition include N-fixation, assimilation
(e.g., uptake of ammonium, nitrate, etc.), mineralization,
nitrification, volatilization, sorption/desorption, and denitrifi-
cation. Soil and plantδ15N‰ values consistently have been
reported to decrease with increasing mean annual precipitation
and decreasing mean annual temperature across a range of
climate and ecosystem types (24). Globally, plantδ15N‰ values
are more negative than soils, suggesting a systematic change
in the source of plant-available N (organic/NH4

+ vs NO3
-) with

climate (24). A compilation of data for nonfixing trees showed
a 3-15‰ range inδ15N‰ values among the same species
relative to small geographic areas (25). The large range in
δ15N‰ reflects spatial variability in the relative amounts and
bioavailability of atmospheric N vs various soil sources of N
(26).

The hypothesis of this study is that strawberry, blueberry,
and pear can be geographically classified using multielement
chemical profiling and bulk stable isotope ratio techniques. The
first objective of this study was to classify between two
geographical growing regions Oregon vs Mexico, Chile, and
Argentina for strawberry, blueberry, and pear, respectively. The
second objective was to determine the classification effects of
Oregon blueberry and strawberry varieties, some of which were
grown on the same field only a few feet apart. The effects of
subregional differences within Oregon were also evaluated.

MATERIALS AND METHODS

Reagents.Concentrated nitric acid, trace metal grade (Fisher Optima,
Pittsburgh, PA); elemental stock standard solutions (Alfa Aesar
Specpure, Ward Hill, MA); and 18 MΩ cm water (Barnstead, Dubuque,

IA) were used. The inductively coupled plasma argon atomic emission
spectrometer (ICP-AES) was used to analyze digested samples.
Employed were the following parameters: model, Liberty 150 ICP-
AES (Mulgrave, Victoria, Australia); V-groove nebulizer, 85 psi; Varian
SPS5 autosampler system; scan integration time, 1 s (all elements);
acid flexible tubing, 0.030 mm i.d. (internal diameter); replicates, three
(all elements); scan window (first order), 0.120 nm; photomultiplier
tube voltage, 650 V; plasma flow, 15 L/min; auxiliary flow, 1.50 L/min;
sample uptake delay, 13 s; pump rate, 15 rpm; instrument stabilization
delay, 13 s; and rinse time, 60 s. The wavelengths selected were as
follows: Ca, 214.434; Cd, 422.673; Cr, 267.716; Cu, 324.754; Fe,
259.94; K, 285.213; Mg, 257.61; Mn, 231.604; Na, 213.618; Ni,
769.896; P, 589; V, 294.402; and Zn, 213.856.

Bulk Stable Isotope Analysis. Nitrogen (δ15N‰) and carbon
(δ13C‰) bulk stable isotopes and bulk C/N ratios were measured and
calculated on a stable isotope mass spectrometer (MS) (Finnigan MAT-
251, ThermoFinnigan, Waltham, MA). Isotopic data used the standard
isotopicδ notation (δ), in per mil (‰) relative to the Pee Dee Belemnite
(PDB) scale for carbon isotopes and relative to air (15N) for nitrogen.
By convention, the following equation forδ was used for carbon (and
an analogous equation for nitrogen):

The enrichment of heavy isotopes relative to the standard gives positive
values and enrichment of light isotopes relative to the standard gave
negative values. Calibration to PDB was done through the NBS-19
and NBS-20 standards of the National Institute of Standards and
Technology (NIST, Gaithersburg, MD).

Oregon Field Sampling.Oregon samples were collected in summer
2002 from field locations spanning the state (∼350 miles in length),
including Hood River, Portland, Salem, Brownsville, Corbett, Corvallis,
and Central Point, depending on commodity. At each Oregon farm,
approximately 8 L of blueberry (Vaccinium caesariense/corymbosum),
8 L of strawberry (Fragaria × ananassa), and >12 pears (Pyrus
communis) were collected by hand and labeled according to farm
location (subregion) and variety. All Oregon samples were hand-picked
at each individual field location, except for one pear collection site.
Pears collected from the site labeled Portland were purchased at a local
organic food market where they were labeled as having been grown in
the Portland area. Individual field replicates were analyzed separately
and represent randomized field collection (i.e., picked from multiple
blueberry bushes, strawberry rows, or pear trees). Only the most
common varieties in the fresh market, both nationally and internation-
ally, were analyzed. The international samples were collected from
Oregon grocery stores that offered produce labels indicating geographic
origin. We intentionally collected fresh market samples when they
would be out of “season” for Oregon and therefore more likely from
South America/Mexico. On the basis of the differences in availability
of these fruits, we made the assumption that these internationally labeled
samples were authentic. No international sublocations were specified.

Sample Preparation and Analysis.All samples were rinsed under
a stream of tap water, followed by a 3-fold rinse with 18 MΩ cm water,
and blotted dry with paper towels. Each sample was homogenized using
a Robot Coupe industrial BLIXER RS1 BX6 (Ridgeland, MS) and
liquid nitrogen, until the homogenate resembled a fine powder. All
samples were stored in individually HNO3-cleaned glass jars at-20
°C until further analysis. Samples were processed according to a method
previously described (15,17). Analysis of total elements within the
digestate was performed using an ICP-AES. This ICP-AES multiele-
ment method required little sample (1 g), and low solvent use, resulting
in decreased reagent cost, less generated waste, decreased disposal cost,
and fewer hazards to the analyst.

Isotope Analysis.Pear samples were analyzed as the whole pear
from freeze fracture homogenization. Homogenates were freeze-dried.
Samples were loaded in capsules for MS analysis. The chemical
analytical technique was well-suited to analysis of modest-to-small
samples; a minimum of 2.0( 0.5 mg was used.

Quality Control and Statistical Analysis. Certified reference
materials (CRMs) were included in each multielement analytical
batch: NIST 1515 apple leaf, NIST 1573a tomato leaf (NIST). CRMs,

(δ) 13C ‰ ) {[(13C/12Csample) - (13C/12Cstd)]/(
13C/12Cstd)} × 1000
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check standards, and blanks accounted for at least 25% of each
analytical batch. A minimum of three standards were used per
calibration curve withR2 values> 0.99. Detection limits were calculated
as three standard deviations based on seven blanks. Average recoveries
for each element were as follows: Ca, 108%; Cu, 120%; Fe, 98%; K,
96%; Mg, 125%; Mn, 106%; Na, 99%; P, 120%; and Zn, 116%. Check
standard recoveries averaged 101%.

Each isotope sample was analyzed in triplicate. NIST 8542 sucrose
ANU-sucrose and NIST 8548 IAEA-N2-ammonium sulfate samples
were analyzed with each batch. External precision estimates ofδ15N‰
andδ13C‰, based on replicate analysis of acetanilide and oxalic acid
standards, were(0.12 and(0.11‰, respectively.

Several statistical analysis methods were applied to the data. Multiple
comparisons analysis of variance (ANOVA) were used in subregional
and variety analysis by Sigma Stat for Windows, Version 2.0 (Systat,
Point Richmond, CA). Graphical presentations andt-tests comparing
geographical location used SigmaPlot 2003 for Windows, Version 8.0
(Systat). Significance was determined using a two-sampledt-test in
Sigma Plot. Canonical discriminant analysis (CDA), linear discriminant
function, and quadratic discriminant function analyses were applied
utilizing SAS version 9.0 (SAS Institute Inc., Cary, NC), and neural
network and genetic neural network analysis were applied using
NeuroShell Classifer (Ward Systems Group, Inc, V2.2, Frederick, MD).
Hierarchal tree model and principal component analyses (PCAs) were
applied using S-Plus (Lucent Technologies, Inc.). The modeling
approach was previously described (16). The tree models were based
on a minimum deviation) 0.01. The models were tested with up to
three different approaches, resubstitution, cross-validation (i.e., leave-
out-one), and test set, previously described in ref15. From each
geographic group, five samples were randomly selected (from 40) to
form a test set of 10 samples (two geographic regions) and removed
from the training set. The remaining samples (nominally 35 from each
group, a total of 70) were used as the training set for the classification
models. Once trained, each model was then used to classify the 10

“unknown” samples in the test set. Variety testing was preformed only
when we had two varieties at the same site so as not to have the
confounding variation created by different geographic sites. Training
and test sets were created that were variety specific; test sets were
typically n ) 8. For example, a training set was created without a
specific variety and the test set contained only the variety withheld
from the training set. Classification performances for each classification
model for each commodity are discussed below.

RESULTS AND DISCUSSION

Regional Element Profiling.Nine elements were consistently
above detection limits: calcium (Ca), copper (Cu), iron (Fe),
magnesium (Mg), manganese (Mn), potassium (K), sodium
(Na), phosphorus (P), and zinc (Zn). Cadmium (Cd), chromium
(Cr), vanadium (V), and nickel (Ni) were often near or below
detection limits. Box plots,Figure 1, are shown for each fruit;
the boundary of the box closest to zero indicates the 25th
percentile, the solid lines within the box mark the mean and
median, and the boundary of the box farthest from zero indicates
the 75th percentile. Whiskers above and below the box indicate
the 90th and 10th percentiles, while symbols represent the 5th
and 95th percentiles. Significant differences are defined at the
95% confidence level. Simple elemental distribution plots show
clustering by geographic origin for Oregon and Mexican
strawberries and Oregon and Chilean blueberries but not for
Oregon and Argentine pears (Figure 2).

The data were further analyzed to explore the feasibility of
classifying fruit samples according to geographic origin. Initially,
this is investigated through statistical visualization methods.
PCA measures variation in the elemental concentrations in the
samples but does not take into account group (geographic origin)

Figure 1. Element concentrations (mg/kg) of Oregon and Mexican strawberries (A), Oregon and Chilean blueberries (B), and Oregon and Argentine
pears (C) (A: Oregon, n ) 40; Mexico, n ) 42; Iron Oregon, n ) 20; and Iron Mexico, n ) 21. B: Oregon, n ) 32; Chile, n ) 37; Iron Oregon, n
) 16; and Iron Chile, n ) 37. C: Oregon, n ) 40; Argentina, n ) 40). Oregon commodities are indicated by the white boxes, and international
commodities are indicated by the gray boxes. Significant separation was determined using a two sample t-test. The boundary of the box indicates the
25th and 75th (top and bottom) percentiles. The lines within the box mark the mean and the median. The whiskers above and below the box indicate
the 90th and 10th percentiles. The 5th and 95th percentiles are displayed with the star symbol.
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membership; however, it is sometimes the case that a large
percentage of the total variation can be explained by the first
few principle components. This effectively reduces the number
of variables needed to describe variation among samples. PCAs
of geographic origin group memberships are well-manifested
for strawberry and blueberry but not for pear (Figure 3).
Because PCA does not take into account group membership,
to get the best possible view of group cluster, we used CDA.
Strawberry and blueberry separate well, although, pears overall
are still poorly separated by geographic origin group (Figure
4). Modeling the data further explored the feasibility of
classifying fruit samples according to geographic origin; linear
discriminate function, quadratic discriminant function, neural
network, genetic neural network, and hierarchal tree modeling
methods were employed and are discussed below for each
commodity.

Regional Strawberry Analysis (Oregon vs Mexico).The
general element concentration variability in Oregon and Mexican

strawberries is shown inFigure 1A. Strawberry concentrations
of Ca, Cu, Fe, Mn, Na, and Zn showed significant separation

Figure 2. Concentrations of copper and manganese in Oregon and
Mexican strawberries (mg/kg) (A); concentrations of calcium and man-
ganese in Oregon and Chilean blueberries (mg/kg) (B); and concentrations
of calcium and copper in Oregon and Argentina pears (mg/kg) (C) are
shown.

Figure 3. Principal component 1 vs principal component 2 for the chemical
profile of elements in Oregon and Mexican strawberries (n ) 80) (A),
Oregon and Chilean blueberries (n ) 68) (B), and Oregon and Argentine
pears (n ) 80) (C).
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(p < 0.0001), as did P and K concentrations (p < 0.01 and
0.05, respectively, 78 d.f.). No significant difference for Mg
concentration was observed between Oregon and Mexican
strawberries. Combinations of Ca, Mn, K, Cu, Fe, or Zn could
be used to visually depict geographic origin group clustering;
for example, seeFigure 2A. On average, Mexican strawberries
contained 380% the concentration of Mn and 190% the Cu
concentration of Oregon strawberries, while Oregon strawberries
contained more Ca (29%), Fe (35%), and Zn (32%) than
Mexican strawberries. Potential sources of increased Mn and
Cu in Mexican strawberry might include atmospheric deposition,
irrigation water, fertilizers, and soil amendments, such as
biosolids (27). PCA generates principle components that are
linear combinations of the original variables. The first principle

component describes the maximum possible variation that can
be projected onto one dimension. PCA on strawberry showed
that the first three components accounted for 99.7% of the total
variability (95, 98, and 99.7%, respectively). PCA and CDA
showed strong visual clustering with Mexican and Oregon
strawberries (Figures 3Aand4A).

Strawberry Modeling. The results of linear discriminate
function, quadratic discriminant function, neural network,
genetic neural network, and hierarchal tree modeling methods
are shown inTable 1. Multiple approaches to evaluate each
model included resubstitution, cross-validation, and test sets.
The linear discriminant function, the quadratic discriminant
function, the neural network, and the genetic neural network
models all had a 100% success classification rate for strawber-
ries. The trace elements P, Cu, Zn, and Mg (Figure 5A) were
found to have the most relative importance to the genetic neural
network model. The hierarchal tree model also had 100%
success rates. Cu concentrations less than 0.87 mg/kg were
classified as Mexican (two terminal nodes) (Figure 6).

Regional Blueberry Analysis (Oregon vs Chile). Figure
1B depicts variable element concentrations in blueberry samples
from Oregon and Chile. Ca, Mg, and Mn were strongly
separated (p , 0.0001, 66 d.f.) using a two-samplet-test, while
Cu, Fe, P, K, Na, and Zn concentrations showed no significant
differences between regions (p > 0.05). Combinations of Ca,
Mg, K, Cu, Na, Fe, or P could be used to visually depict
geographic origin group clustering; for example, seeFigure 2B.
In general, Chilean blueberry had 50% the concentration of Mn
and 180% the Ca concentration of Oregon blueberries. One U.S.
Department of Agriculture blueberry collection site in Corvallis,
Oregon, was excluded (n ) 8) due to the historical land use at
the agricultural experiment station and because no retail
commodities are grown for human consumption at this site.
Interestingly, blueberries from this experimental site had
elevated levels of Cu and Mn (152 and 678%, respectively)
relative to the average concentrations at the remaining Oregon
sites. Although high bush blueberries are not fertilizer intensive,
they grow readily in acidic, moist soils. This optimum growing
condition renders them susceptible to increased nonnutritive
metal uptake. It is suggested that blueberries could be used as
a bioindicator species to assess metal contamination in soils
(28,29). The U.S. Department of Agriculture is also exploring
the use of coal ash and biosolid compost as a soil amendment
in large scale blueberry production operations globally (30).
High metal concentrations in blueberry marked this Corvallis
site as statistically independent from all others from typical
agronomical practices. These data points were removed from
further statistical analysis.

Using PCA, 99.9% of the total variability could be explained
by the first three principal components (75, 96, and 99.9%
respectively). Strong visual regional clustering was observed
for Chilean and Oregon blueberries using PCA (Figure 3B)
and CDA (Figure 4B).

Blueberry Modeling. The results of linear discriminant
function, quadratic discriminant function, neural network,
genetic neural network, and hierarchal tree modeling methods
are shown inTable 1. The linear discriminant function, the
quadratic discriminant function, the neural network, and the
genetic neural network models all had a 100% success clas-
sification rate for blueberry. The trace elements Cu, Mg, and
Zn, Figure 5B, were found to have the most relative importance
to the genetic neural network model. The hierarchal tree model
had 100% success rates. Mn concentrations<6.65 mg/kg were
classified as Chilean (two terminal nodes) (Figure 6).

Figure 4. CDA frequency chart using the canonical variable. All 10
available dimensions are utilized in this simplified visual representation
of the separation between Oregon and Mexican strawberries (n ) 80)
(A), Oregon and Chilean blueberries (n ) 68) (B), and Oregon and
Argentine pears (n ) 80) (C).

Differentiation of Growing Origin of Three Fruits J. Agric. Food Chem., Vol. 54, No. 13, 2006 4511



Regional Pear Analysis (Oregon vs Argentina).Element
concentration variation in Oregon and Argentine pears can be
observed inFigure 1C. Two-samplet-tests suggest that Cu
concentration showed significant separation (p < 0.0001, 78
d.f.) as did Ca (p < 0.01), while all other element concentrations

were not significantly different between Oregon and Argentine
pears (p> 0.05). Combinations of trace elements could not be
found that provided good visually depicted geographic origin
group clustering (Figure 2C). PCA results showed that the first
three components explained 99.9% of the variability (93, 98,
and 99.9%, respectively); however, no visual clustering of
Oregon and Argentine pears was observed (Figure 3C). The
CDA frequency chart for Oregon and Argentina pears also
shows a great deal of overlap (Figure 4C).

Pear Modeling. The results of linear discriminate function,
quadratic discriminant function, neural network, genetic neural
network, and hierarchal tree modeling methods. Multiple
approaches to evaluate each model included resubstitution, cross-
validation, and test sets as shown inTable 1. Overall, the linear

Table 1. Sample Number, Linear Discriminant Function, Quadratic Discriminant Function, Neural Network, Genetic Neural Network, and Hierarchal
Tree Model Classification Performance Analysis Results for Regional Geographical Origin Prediction of Blueberry, Strawberry, and Pear Samples
Based on Total Recoverable Element Concentration Profiling

%

linear discriminant
function

quadratic discriminant
function

neural
network

genetic neural
network

hierarchal
tree

fruit (all
varieties) region

resubsti-
tution

cross-
validation

test set
(n ) 10)

resubsti-
tution

cross-
validation

test set
(n ) 10)

resubsti-
tution

test set
(n ) 10)

resubsti-
tution

test set
(n ) 10)

resubsti-
tution

test set
(n ) 10)

strawberry Mexico
(n ) 40)

100 100 100 100 100 100 100 100 100 100 100 100

OR
(n ) 40)

100 100 100 100 100 100 100 100 100 100 100 100

blueberry Chile
(n ) 36)

100 100 100 100 100 100 100 100 100 100 100 100

OR
(n ) 40)

100 100 100 100 100 100 100 100 100 100 100 100

pear Argentina
(n ) 40)

74 75 60 100 100 100 100 100 100 100 93 90

OR
(n ) 40)

75 70 80 88 85 100 94 80 100 100 93 90

Figure 5. Genetic neural network model, relative importance of inputs,
used to classify Oregon and Mexican strawberries (A), Oregon and Chilean
blueberries (B), and Oregon and Argentine pears (C).

Figure 6. Hierarchal tree models for classification of Oregon and Mexican
strawberries, Oregon and Chilean blueberries, and Oregon and Argentine
pears are shown. A tree-based model results in a simplified hierarchical
tree of decision rules useful for geographic origin classification. Resub-
stitution rules result in 100, 100, and 93% correct classification rates,
respectively, for the data sets.
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discriminant function model did not perform very well on the
pear data set; this modeling analysis had only a 60-80% success
rate. The other modeling methods were more successful. The
quadratic discriminant function had an 85-100% success rate,
and the neural network had an 80-95% success rate. The best
model for the pear data set was the genetic neural network
models, which had a 100% success rate. Genetic algorithms
seek to solve optimization problems using the methods of
evolution, explicitly survival of the fittest. In a typical optimiza-
tion problem, there are a number of variables that control the
process and a formula or algorithm that combines the variables
to fully model the process. The problem is then to find the values
of the variables that optimize the model in some way. Other
traditional methods tend to break down when the problem is
not so “well-behaved”, but genetic algorithms are designed to
perform on data that is not so “well-behaved”, which may
account for its success with pear. The microtrace elements Cu,
Mn, and V,Figure 5C, were found to have the most relative
importance to the genetic neural network model. Copper,
manganese, and vanadium are trace elements that are unlikely
to be directly amended into soil; therefore, although the pears
were difficult to model, this model may be especially robust to
environmental/agronomic changes. Additional research is war-
ranted to test this hypothesis. The hierarchal tree model used
for regional classification prediction of Oregon and Argentine
pear is shown inFigure 6 and is significantly more complex
than for the other fruits tested.The tree model requires eight
terminal nodes to meet the classification criteria and then has a
classification success rate of 93%.

Bulk stable isotope ratios in pear samples were used to
address the lack of initial modeling success between Oregon
and Argentine samples. We have used bulk stable isotope ratios
previously to successfully investigate geographic origin (16, 31).
Bulk stable isotope ratios,δ13C/δ15N, depict visual separation
between Oregon and Argentine pears, as shown inFigure 7.
Oregon pear had significantly less enrichment of lighter12C
than Argentine pear (p< 0.0001, 42 d.f.). No significant
differences in δ15N were observed between Oregon and
Argentine pears (p > 0.05). The addition of the bulk stable
isotope ratio data to the models would most likely increase the
modeling success rate for pear.

Variety and Subregional Analysis. One caveat of using
profiles of elemental concentrations based on country-to-country
data is the possibility of misclassification due to varietal effects.
It is difficult to get good variety data, because typically each
variety is grown in a different location, so there are inherent

geographic differences leading to large confounding variables.
In this study, we were able to collect two varieties of strawberry
and two varieties of blueberry from adjacent plants (same soil,
same environment, and same agronomy practices), therefore
providing an excellent opportunity to evaluate the variety effect
without many of the typical confounding variables. Effects of
variety on geographic origin analysis of strawberry and blue-
berry have not been previously published.Figure 8 shows some
of the element variety and subregional differences, suggesting
differing variety element uptake for strawberry, blueberry, and
pear.

Oregon Strawberry Variety Effects. Although there are
large differences in Cu and Mn concentrations between Mexican
and Oregon strawberry, there are also some Cu and Mn variety
differences between Oregon strawberries (Figure 8A) (multiple
comparisons ANOVA). Significant Na concentration differences
were seen between Totem and Hood cultivars from the Corvallis
field location (p < 0.01). Fe concentrations were significantly
different between Hood and Puget summer cultivars at the Mt.
Angel field site (p < 0.01). Although there are variety
differences within Oregon strawberries grown in the same field,
these differences are relatively small as compared to the overall
elemental profile differences with Mexican strawberries and,
most importantly, within the framework of this study, do not
appear to adversely affect modeling success (Table 2). We tested
the effects of variety on all of the models. At field sites where
we had two varieties, we removed one variety from the model
training set. The training set then contained some strawberries
from the geographic site (i.e., representing environmental
conditions, soil, agronomical practices, etc.) but would not
contain the second variety, in this way isolating the variety
effect. The test set would then be composed of a single variety,
as always, withheld from the training set. The linear discriminant
function, quadratic discriminant function, neural network, and
genetic neural network models all had 100% success rates
(Table 2). The hierarchal tree model had 88-100% success
rates. This suggests that within this strawberry data set that
variety differences do not adversely affect geographic origin
modeling using profile elemental concentrations.

Oregon Strawberry Subregional Effects.The strawberry
cultivar Totem had significantly higher mean Zn concentrations
at the Brownsville site as compared to the Corvallis site only
22 miles away (p < 0.01). Significant mean concentration
differences among the Hood cultivar between Corvallis and Mt.
Angel field locations were also seen for Cu, K, and Zn (p <
0.0001). These subregional differences are not surprising,

Figure 7. Argentina (A) and Oregon (O) pear isotope ratios (Oregon, n
) 16; Argentina, n ) 20).

Table 2. Linear Discriminant Function, Quadratic Discriminant
Function, Neural Network, Genetic Neural Network, and Hierarchal
Tree Model Classification Performance Analysis Results for Variety
Effects on Geographical Origin Prediction of Strawberry and Blueberry
Samples Based on Total Recoverable Element Concentration Profiling

%

discriminant
function network

fruit varietya linear quadratic neural
genetic
neural

hierarchal
tree

strawberry Hood 100 100 100 100 88
Totem 100 100 100 100 100

blueberry Bluecrop 100 100 100 100 100
Jersey 100 100 100 100 63

a Varieties selected for test set modeling were those field sites where two varieties
were collected. Field sites where only a single variety was available (Mt. Angel,
Puget summer and Hood; Brownsville, Totem) were not modeled individually.
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considering the diversity of Oregon soils. Coetzee et al. found
that, in South Africa, the combination of elements characterizing
wines from a particular region was different within each region
(32). However, like the variety data, within this strawberry data
set, subregional differences are relatively small and do not
adversely affect geographic origin modeling combined with
profile elemental concentrations; for example, hierarchal tree
model test set success rates were>88% (Brownsville, 88%;
Corvallis, 94%; and Mt. Angel, 100%).

Oregon Blueberry Variety Effects. A significant difference
in element concentrations among blueberries, Jersey variety and
Bluecrop cultivar, suggests that there are discernible differences
between varieties/cultivars of blueberries picked from the same
field location, as is the case with Cu shown inFigure 8B. Mean
element concentrations of Cu and Zn were significantly different
between Jersey and Bluecrop blueberries at the Corvallis field

location (p < 0.0001). Jersey and Bluecrop blueberries also
showed significant differences between mean Ca, Cu, and Mg
picked from the Corbett field site (p < 0.005). Variety test sets
were created as described above for strawberry. The linear
discriminant function, quadratic discriminant function, neural
network, and genetic neural network models all had 100%
success rates (Table 2). The hierarchal tree model had 63-
100% success rates. This suggests that within this blueberry
data set that variety/cultivar differences do not adversely affect
most geographic origin modeling using profile elemental
concentrations. The hierarchal tree model, however, did not
perform as well overall within the framework of this study,
suggesting that blueberry variety/cultivar may adversely affect
some models. The hierarchal tree model is a less complicated
model, synthesizing the decision rules to single elements; this
probably makes it inherently less robust than the discriminant

Figure 8. Strawberry (A), blueberry (B), and pear (C) copper and manganese concentrations vs subregion and variety are shown. Statistical differences
were determined using multiple comparisons ANOVA. Letters denote statistical differences at the 95% confidence level. The boundary of the box
indicates the 25th and 75th (top and bottom) percentiles. The solid lines in the box mark the median and mean. The 5th and 95th percentiles are
displayed with the star symbol.
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analyses and neural network modeling methods, which take into
account all elements. The tree model appears to be more
susceptible to inadequate or changing population variation, due
to the simplification nature of the model, at least within the
framework of this study.

Oregon Blueberry Subregional Effects. The Bluecrop
cultivar showed significant differences between the Corvallis
and the Corbett field sites for mean Ca, Mg, Mn, K, and Zn
concentrations (p < 0.05). The Jersey variety showed a
significant difference between the Corvallis and the Corbett sites
only for mean Ca and Mg concentrations (p < 0.04). Similar
success rates were achieved on subregional test sets (>80%).
Models could also be created with a high degree of success
based on subregional geographic origins. Hierarchal tree model
test set success rates were>82% (Corvallis, 82%; Corbett,
88%).

Oregon Pear Subregional Analysis.Differences in metal
concentrations among Bartlett pear samples from Oregon
subregions can be seen inFigure 8C and are small relative to
strawberries and blueberries. This may be a consequence of
having analyzed only one variety of pear. Another explanation
is the differences in growing conditions and element assimilation
in pear vs blueberry and strawberry. Tree fruits undergo a more
significant element translocation distance, and reproductive sinks
are directly related to the age of the tree and climate of the
growing site. Despite these results, significant differences were
observed between sites. The most dramatic differences were
found with Cu concentrations at Salem (p < 0.001) and with
Mn concentrations at Central Point (p < 0.001), with respect
to the Portland site (the next site closest in concentration for
both metals). Hierarchal tree model test set success rates were
g50% (Central Point, 63%; Corvallis, 75%; Salem, 50%;
Portland, 50%; and Hood River, 100%). Only one variety of
pear was included in the study, so variety analysis was not
performed.

Pear Bulk Stable Isotope Ratios.Because the modeling of
element profiles for pear was less successful, we investigated
bulk stable isotope ratios as a means to gain further discriminat-
ing chemical data. Isotopic analysis of Oregon sublocations
showed significant separation amongδ15N ratios, ranging from
-2 to +4 δ15N. Most Oregon sublocationsδ15N ratios were
significantly different from one another. Central Point showed
strong significant differences from all other sublocations (p <
0.01), while Hood River was significantly different from
Portland and Salem (p < 0.05). Portland and Salem were not
statistically different from one another (p > 0.05). PositiveδN
ratios indicate a selective enrichment of heavy15N as compared
to 14N. Central Point Bartlett pear samples accumulated the
heavier15N isotope as compared to14N followed by Salem,
Portland, and Hood River, respectively. This could be, in part,
due to the latitudinal differences of the field sites;δ15N has
been associated with latitude (33).

Another potential caveat of the pear data set was potentially
revealed when subregional geographic origin CDA plots were
generated. Oregon pears show visual clustering differences from
Argentine pears, with one notable exception: the pear labeled
as Portland. These were the only samples from Oregon not hand
collected. One possible explanation for this overlap could be
that the pears were mislabeled as being grown in Oregon. As
with all authenticity studies, authenticating samples is critical
to the study, as well as developing a database that contains all
of the potential variations in the population to be studied.

The genetic neural network model performed the best of all
modeling methods. Interestingly, some elements from the genetic

neural network model were consistently found to be important
to the model input, specifically Cu, Mn, Mg, and Zn. It may be
possible to create further simplification of the method by
analyzing and modeling only these elements and as needed
adding bulk stable isotopes. Creating a fingerprint or unique
chemical signature using trace element and stable isotope ratio
chemical profiling may serve as a cost-effective approach toward
determining the geographic growing region of a food commod-
ity. The identification of distinct chemical-signature effects on
geographic origin from sublocation and variety/cultivar of fresh
fruit has not previously been described. The ease and efficiency
of trace element analysis make it an optimal choice for
geographic regional and subregional determination of blueberry,
strawberry, and pear. Within the framework of this study, it
appears that the geographic origin of strawberry, blueberry, and
pear may be feasible through their chemical profile. Statistical
analyses revealed groupings between the two major geographic
regions for each commodity studied. The progression of this
type of profiling study includes the addition of other geographic
regions, seasonal variation (including agronomical changes), and
additional varieties from all locations (31). This information
may ultimately increase food safety measures and command
accountability in global food production.
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